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We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted
to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing
are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary
integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case,
we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever
the drop to beam radius ratio and the refractive index contrast between the two fluids. The semiangle of the
cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast.
Above a threshold value of the radiation pressure, these “optical cones” become unstable and a disruption is
observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to
the formation of a stable “optical torus.” These findings extend the electrohydrodynamics approach of drop
deformation to the much less investigated “optical domain” and reveal the openings offered by laser waves to
actively manipulate droplets at the micrometer scale.
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I. INTRODUCTION

Since the seminal works of Zeleny �1� and Taylor �2� on
electrified jets and drops, of Pellat �3� on dielectric liquid rise
between vertically oriented parallel electrodes, or of Lipp-
mann �4� on electrowetting, the control of fluid interface de-
formation under an applied field has received an increasing
amount of attention for the past century. Such a control tech-
nique plays a significant role in emerging microtechnologies
and nanotechnologies with applications as different as elec-
trospraying �5�, ink-jet printing �6�, electrospinning of poly-
mer fibers �7,8�, surface relief patterning �9�, tunable lensing
�10�, or microfluidics �11�. When acting on finite volume
objects such as drops, the electric stress tends to elongate the
fluid interface in the direction of the electric field, as de-
scribed by the well-established electrohydrostatic theory
�2,12–15�. This approach is usually relevant to the extreme
situations in which either both fluids, inside and outside the
drop, are insulating dielectrics with no free charges present at
their interface or the drop is a conducting fluid while the
surrounding one is insulating. For a drop with zero net elec-
tric charge placed in a uniform external electric field, the
electrohydrostatic theory predicts that the drop surface is al-
ways deformed into a prolate spheroid. Drop deformation
toward an oblate spheroid was nevertheless observed in ex-
periments �16�. To explain qualitatively this different type of
shape, Taylor proposed a theory based on the leaky dielectric
model �17�, which was the basis for further developments
leading to the so-called electrohydrodynamics �18,19�. A re-
cent investigation of electric deformations on fluid interfaces
�20� showed that prolate and oblate shapes in the field direc-
tion can be obtained for both drops and bubbles depending
on conductivity and dielectric constant ratios. A magnetic
field can also interact with fluid interfaces and form well-

organized peak structures �21,22� or elongate magnetic drop-
lets �23,24�.

The quantitative description of these deformations also
opened new horizons in fluid metrology by giving the oppor-
tunity to characterize, in a noncontact way, the mechanical
properties of fluid interfaces, with particular attention to the
interfacial tension using an electric �25,26� or magnetic �27�
field. A new application domain of these electric and mag-
netic manifestations is digital microfluidics, i.e., the manipu-
lation of two-phase flows and droplets in microchannels �11�
such as, for instance, electric actuation �28� to manipulate
flowing droplets. However, in some particular cases, the use
of electrodes or coils may become difficult, particularly for
in situ characterization in open environments such as oceans
�29� or for single micro-objects such as cells �30�. To over-
come this difficulty, a second interface deformation approach
due to radiation pressure effects has been anticipated. For
instance, it is now well established that acoustic radiation
pressure can deform a fluid interface �31� and even induce
droplet ejection for drop-on-demand devices �32,33�. Re-
cently, with the emergence of nanobiotechnologies, this strat-
egy has been successfully extended to micrometer and sub-
micrometer scales using optical waves. For example, the
optical deformation of soft materials in general, and of bio-
logical micro-objects in particular, brought new insights into
the viscoelastic properties and the elasticity of red blood
cells �34–36�. The optical radiation pressure of a laser beam
focused on a fluid interface is also known as an efficient
contactless tool for fast metrological measurements of inter-
facial tension �37� and viscosity �38� at a microscopic scale,
which is particularly appealing in the difficult cases of weak
interfacial tensions and large viscosities. Thus, performing a
detailed investigation of the deformation of drops by the op-
tical radiation pressure in both the linear and nonlinear re-
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gimes of deformation would combine the possibility of ex-
tending the fundamental and applied developments of finite
volume electrohydrodynamics to the optical domain with the
advantage of bringing quantitative insights into nonlinear de-
formation of finite-size domains by laser waves, a domain
that is still poorly known. This is the purpose of the present
work.

The optical deformation of liquid interfaces was first ob-
served by Ashkin and Dziedzic �39� using a focused laser
beam to deform the water/air free surface. Their experiment
demonstrated that the meniscus always bends toward the me-
dium of lower optical index whatever the direction of propa-
gation of the incident wave. Later on, Zhang and Chang �40�
observed the deformation of a water droplet illuminated by a
linearly polarized pulsed laser considering two different en-
ergies �100 and 200 mJ�. In these experiments, the optical
absorption was assumed to be small enough to discard ther-
mal effects. At the lower energy, Zhang and Chang observed
an oscillation of the drop surface due to the propagation of
capillary waves, a phenomenon that was further confirmed
by Lai et al. �41� and by Brevik and Kluge �42�. In both
studies, the authors solved the problem numerically using a
linear wave theory that assumes a linearization of both the
flow and optical radiation pressure. When the water droplet
was illuminated with the highest available energy �200 mJ�,
its front face adopted a sort of conical shape leading eventu-
ally to its disruption and the generation of microdroplets at
the tip. In order to avoid such a large amount of laser energy
and access to stationary shapes instead of transient ones due
to a pulsed excitation, new investigations were performed
more recently by Casner et al. �43–45� and Wunenburger et
al. �46,47� using the interface between two liquid phases in
coexistence close to their critical point. The interfacial ten-
sion between such phases being extremely small
��10−7 N m−1� compared to the water superficial tension
�72 mN m−1�, deformations many orders of magnitude larger
than in previous experiment �39,40� could be easily observed
using a continuous laser wave. They experimentally con-
firmed that an interface always bends toward the fluid of
lower refractive index whatever the direction of propagation
of the beam. At large beam powers, typically of the order of
1 W, interface deformations become nonlinear. Stable
nipplelike shapes were observed when the laser wave is in-
cident from the fluid of lowest optical index while propaga-
tion in the opposite direction leads to a needlelike shape, the
disruption of the interface, and a jetting instability driven by
the total reflection of light within the deformation. As illus-
trated in Fig. 1, interface disruption is still observed in such
near-critical two-phase samples during �i� the deformation
and the subsequent draining of a thin film �of largest refrac-
tive index�, which wets the cell edges near the critical point,
and �ii� the adiabatic growth of a heterogeneous liquid drop
�of largest refractive index too� during a liquid-liquid phase
transition driven by a localized composition quench induced
by a laser �48�. While very different in nature, these last
manifestations show analogies, at least at the level of experi-
mental pictures, with the deformation and disruption of
charged drops observed by Zeleny �1� and Taylor �2� under
strong electrical fields. Indeed, by increasing the electric
field, drop deformation evolves from rounded to conical

shapes emitting eventually a jet of microdroplets at the tip. A
theoretical study was proposed by Taylor �2� indicating that
the stable static solution for a conductive drop submitted to
both electric and capillary couplings is near-conical with a
semiangle of 49.3°. Since then, many experimental �49–52�
and theoretical �19,25,26,53� works have been performed to
analyze stability and disruption of these conical shapes as
well as on the value of the semiangle versus electric proper-
ties of the liquids �see, for instance, Fig. 2 in Stone et al. �54�
for the dielectric case and the review of Fernandez de la
Mora �53� for conducting droplets�. Note, finally, that de-
formed interfaces with conical shape can be found in the
absence of electromagnetic excitation. A first example is the
near-conical shapes observed during the deformation of the
interface between immiscible fluids by selective withdrawal,
with a straw whose tip is suspended above the unperturbed
interface �55,56�. Other fluid dynamics examples are drop
breakup from a nozzle �57� or sink flows in the presence of
an interface �58�, thus illustrating the emergence of a sort of
robust and general topological transition �59� of fluid inter-

FIG. 1. �a� Dynamics of the draining and the deformation of a
thin wetting film by the optical radiation pressure of a continuous
Ar+ laser beam. The initially flat interface �not shown� takes a
rounded shape that further becomes near-conical and eventually de-
stabilizes to give birth to a jet. The fluids are phase-separated liq-
uids close to a liquid-liquid critical point �see �46� for a detailed
description of the system�. The thin film results from the wetting
transition occurring close to the critical point. Time delays from the
first image are, respectively, 12, 18, 22, 23, and 24 s �from top left
to down right�. Control parameters are P=590 mW, �0=4.2 �m,
and T−TC=5 K, where TC is the critical temperature. The arrow
indicates the direction of propagation of the exciting beam, not seen
by using a colored filter. �b� Dynamics of a heterogeneous drop
growing adiabatically after an optical quench in composition inside
the coexistence curve of a binary liquid mixture driven by a con-
tinuous Ar+ laser �see �48� for experimental details�. The drop is
heterogeneously nucleated on the bottom cell window and grows
inside the beam. During the late-stage growth, its shape shifts gen-
tly from hemispherical to near-conical until destabilization of the
interface by the radiation pressure. Time delays from the first image
are respectively 202, 266, and 312 s �from left to right�. Control
parameters are P=880 mW, �0=12.4 �m, and T=293.6 K. The
observed laser beam propagates upwards.
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face deformations under localized forcing. Motivated by
some amazing effects of the radiation pressure illustrated in
Fig. 1 and suspecting that finite-size effects may promote the
observed near-conical shapes, we propose a numerical inves-
tigation of optical deformation of sessile liquid drops by con-
tinuous laser waves. Indeed, beyond the simple deformation
of spherical interfaces, we demonstrate in the present work
that optical stretching can lead to near-conical shapes. Above
a radiation pressure threshold, drop disruption is also ob-
served numerically, in the absence of total reflection of light
however, demonstrating a new phenomenon of interface in-
stability. The optical analogue of oblate deformation by an
electric field, induced here by an optical squeezing, is inves-
tigated as well. At large radiation pressures, the local squeez-
ing leads to the formation of toruslike shapes. Section II is
devoted to the physical model used to predict the deforma-
tion of drops by the optical radiation pressure. Section III
briefly summarizes the numerical algorithm used here, based
on the boundary integral element method �BIEM�. Results on
drop deformations for both stretching and squeezing are pre-
sented and discussed in Sec. IV.

II. PHYSICAL MODEL

The droplet configuration under consideration, together
with the notations used throughout this work, are represented
in Fig. 2.

To describe the hydrodynamics of the laser/fluid interac-
tion, let us first consider a Gaussian continuous laser wave,
of beam waist �0, and make dimensionless all lengths in-
volved in the problem using �0. This laser wave is supposed
to impinge on the interface between a semispherical dielec-

tric viscous drop �marked as fluid 1� of dimensionless radius
a �a=

Rd

�0
, where Rd is the drop radius, a=2 in Fig. 2� and a

surrounding dielectric viscous fluid �marked as fluid 2� of
dimensionless horizontal and vertical extensions R and H.
We assume that the three-phase contact line is motionless.
Since the intensity distribution of the laser beam, centered on
the drop, is supposed to be axisymmetric as in usual situa-
tions, cylindrical coordinates �er ,ez ,e�� with their origin O
located at the center of the drop are used throughout this
work so that any point x is located by �r ,z ,�� in this refer-
ence frame of coordinates. Governing equations are written
in a dimensionless form using �i� the laser waist �0 as the
characteristic length scale, �ii� the viscous relaxation velocity
u*= �

��� as the reference velocity associated with the charac-
teristic time scale t*=

����0

� and, �iii� the reference pressure
p

i
*=

�iu*

�0

, i=1,2 to rescale the pressure pi in each phase.

Here, � is the interfacial tension between fluids 1 and 2, �i is
the dynamic viscosity of fluid i, and ���=

�1+�2

2 is the average
viscosity of the fluids. It could be pointed out that, depending
on the fluids and/or the large beam powers under consider-
ation �those given in Fig. 1, for instance�, temperature effects
may disturb or even overcome the mechanical effect of light
on fluid interfaces, thus making a coupled heat and momen-
tum transfer description necessary. The first expected addi-
tional effect is a direct laser heating due to the optical ab-
sorption of the drop and/or of the surrounding fluid. Fluids
must indeed be transparent at the used optical wavelength, as
is generally the case for classical liquids in the visible win-
dow. Typically, the optical absorption of water, used in the
experiments of Ashkin and Dziedzic and Zhang and Chang
�39,40�, is of the order of 3�10−3 cm−1 in the visible region,
while that of the micellar phases used in the examples illus-
trated in Fig. 1 is 3�10−4 cm−1. In the latter, the overheating
induced by a beam power of the order of 1 W is smaller than
0.1 K �60�. Direct laser heating effects can then be discarded,
even in critical fluids, as long as the temperature is not too
close to the critical one. Thus, we consider in the following
all liquid properties �� ,�i ,�i ,Ni� as constant in the presence
of laser light, �i and Ni being, respectively, the density and
optical refraction index of fluid i. A second coupling is the
thermocapillary effect. Since the interfacial tension � is a
function of the temperature, local laser heating may drive
interfacial tension gradients inducing stresses on the drop
interface and its subsequent deformation �61�. A typical
value of ��−1��� /�T�� for classical fluids is 10−3 K−1 �62�,
which leads to negligible thermocapillary effects considering
the above-mentioned laser overheating. For the case illus-
trated in Fig. 1, we already found that thermocapillary inter-
face deformation is negligible near the critical point �60�.
Consequently, we can safely discard temperature effects
without affecting the generality of our purpose. Finally, when
getting very close to the critical point, the capillary length
lC=	� /��g, where �� is the density contrast and g the ac-
celeration due to gravity, vanishes while thermal fluctuations
increase. Then, the interface roughness lT=	kBT /� �63�,
where kBT is the thermal energy, increases too and may
dominate capillary effects. Using the critical data given in
Ref. �60� for deformations presented in Fig. 1, lC� lT re-
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FIG. 2. �Color online� Schematic representation of a captive
drop �fluid 1� immersed in a second liquid �fluid 2� and submitted to
the optical radiation pressure of a laser beam centered on the drop
axis and initially focused at the interface. SC1, SC2, and SI, respec-
tively, denote the solid boundary with fluid 1, fluid 2, and the inter-
face between the two fluids. The initial drop is hemispheric. The
three-phase contact line is assumed to be pinned. Lengths are made
dimensionless using the beam waist �0.
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quires T−TC�3�10−2 K, a condition which has always
been fulfilled in experiments. Conversely, for classical fluids,
� lies between 10 and 100 mN /m and �� is about
102–103 kg /m3. As a consequence, lT is orders of magnitude
smaller than lC so that thermal fluctuations are also negli-
gible for this class of fluids.

In addition, we assume in this study that inertial and grav-
ity effects are negligible at the micrometric scale, which im-
plies that the Reynolds and Bond number are small com-
pared to unity. Along with the condition lC� lT, which is also
automatically satisfied as indicated above, we consider an
incompressible quasistatic Stokes flow in each phase.

Therefore, the hydrodynamics of each liquid phase is de-
scribed by the Stokes and mass conservation equations, re-
spectively, given by

0 = − �qi + �2ui, i = 1,2 �1�

and

� · ui = 0, i = 1,2, �2�

where ui and qi are, respectively, the dimensionless velocity
and the pseudopressure in fluid i. This pseudopressure con-
tains the electrostrictive contribution of light in dielectrics
�64�, which was demonstrated to have no incidence on the
shape or the height of the deformed interface �41,42,60�.
This pseudopressure is defined as

qi =
1

p
i
*
pi −

	0

2
Ei

2�i
�	i

��i
� , �3�

where 	i=Ni
2 represents the relative dielectric permittivity of

fluid i, 	0 is the permittivity of vacuum, and Ei
2 is the qua-

dratic magnitude of the electric field in fluid i averaged over
an optical period. Considering the classical expression of the
divergence-free hydrodynamic stress tensor Ti,

Ti = − qiI + ��ui+
t � ui� , �4�

we can write the boundary condition at the interface as fol-
lows:

2

1 + 

�
T1 · n − T2 · n� · n = ��r� − ��r� , �5�

where n is the unit vector normal to the interface directed
from fluid 1 to fluid 2, and 
=

�1

�2
is the viscosity ratio. Equa-

tion �5� simply expresses the fact that the normal stress on
the interface is balanced by capillary forces and the optical
radiation pressure, respectively, represented in dimensionless
forms by ��r� and ��r�. Indeed, on the right-hand side of Eq.
�5�, ��r� represents the dimensionless double mean curvature
of the interface, given by

��r� =
1

r

d

dr
 rz�
	1 + z�2� , �6�

where z�= dz
dr is the local slope of the interface. The second

term, ��r�, is the contribution of the dimensionless optical
radiation pressure at the drop interface. As the interface de-
formation is experimentally found to be directed toward the
fluid of smallest refractive index whatever the direction of

propagation �39,43�, we consider the Minkowski point of
view, which states that the photon momentum in a dielectric
medium varies linearly with the refractive index �65�; for a
review on the Abraham-Minkowski controversy, see, for in-
stance, the review of Brevik �66�. The amplitude of ��r� is
nevertheless affected by the direction of propagation through
its dependence on the incidence and transmitted angles. In
addition, ��r� also depends on the polarization of the laser
wave. In the present work, we preserve the axial symmetry
of the laser/fluid interaction by assuming a circular polariza-
tion of the laser wave. Finally, for the sake of simplicity, we
assume refringence of light at the drop interface at any inci-
dence angle. By doing this, we eliminate situations in which
total reflection of light may occur at the interface, such as
those presented in Fig. 1 for example. Therefore, the laser
wave is supposed to propagate from the optically less dense
fluid. Note that this choice is not restrictive at all; by remov-
ing this assumption, we would find the same type of drop
deformations but with an asymmetry in amplitude due to the
nonlinear behavior of the transmission and reflection Fresnel
coefficients with the angle of incidence �44,60�. Another rea-
son for this choice is made clear in Sec. IV B, where a new
type of laser-induced interface instability is advanced, the
one demonstrated previously being triggered by total reflec-
tion of light.

On the one hand, to stretch a drop by light, and thus
deform the interface outward �Sec. IV A�, the wave propa-
gates downward. In this case, one has N1
N2, and the di-
mensionless expression of the optical radiation pressure is
��r�=�dn�r�

�0

� , where �dn�r� is given by

�dn�r� =
I�r�

c
cos �i�2N2 cos �i − �dn�N2 cos �i + N1 cos �t�� .

�7�

On the other hand, to squeeze a drop and thus deform the
interface inward �Sec. IV C�, we choose N1�N2 and con-
sider a beam propagating upward. In this case, the expression
of the rescaled optical radiation pressure becomes ��r�
=�up�r�

�0

� , where �up�r� is given by

�up�r� = −
I�r�

c
cos �i�2N1 cos �i − �up�N1 cos �i

+ N2 cos �t�� . �8�

In Eqs. �7� and �8�, we have denoted by �i and �t the inci-
dence and transmission angles, respectively; c is the light
celerity in vacuum. One has �i=arctan�z�� while �t depends
on the direction of propagation. One has �t=arcsin�� sin �i�
or �t=arcsin� 1

� sin �i�, respectively, for upward and down-
ward propagations, where �=N1 /N2 is the refractive index
ratio. Moreover, I�r� represents the intensity of the Gaussian
laser beam. By neglecting the weak z dependence of the
beam radius, its expression is given by

I�r,z� � I�r� =
2P

��0
2e−2r2

, �9�

where P is the beam power. In addition, �up and �down are
the Fresnel transmission coefficients of energy fluxes. These
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coefficients are obtained from the ratio of the transmitted to
incident normal components of Poynting’s vectors and are
expressed as

�up = �down

=
2N1N2 cos �i cos �t

�N1 cos �i + N2 cos �t�2 +
2N1N2 cos �i cos �t

�N2 cos �i + N1 cos �t�2

�10�

for a circulary polarized beam. In order to quantify the ef-
fects of the laser wave on the interface deformation, it is
convenient to define the electromagnetic to Laplace pressure
ratio. This ratio �, taken at r=0 ��i=�t=0�, is defined as

� = ���r = 0�� =
4P

�c�0�

Ni�N2 − N1�
�N2 + N1�

, i = 1,2, �11�

where Ni refers to the optical index of the incidence fluid.
When no slip is assumed at the interface, along with the fact
that fluids are immiscible, it follows that the velocity u of the
interface SI is equal to that of each fluid particle on SI, i.e.,

u�x� = u1�x� = u2�x�, x � SI. �12�

Moreover, the movement of the interface is described using a
Lagrangian approach. It consists in following each fluid par-
ticle of the interface in its Lagrangian motion according to
the kinematic condition

dx

dt
= u�x�, x � SI. �13�

This condition indicates that the interface is advected along
with the flow until the equilibrium is reached for which nor-
mal velocities along the interface are zero, i.e., u�x� ·n=0,
x�SI. Finally, we assume a classical no-slip boundary con-
dition on all the solid boundaries of the domain

ui�x� = 0, x � SCi, i = 1,2. �14�

The above system of equations is solved using a boundary
integral element method �BIEM�. Due to the axial symmetry
of the laser/drop interaction, it consists in an axisymmetric
integral formulation making use of the fundamental solution
of Stokes’ equations. The solution is sought with a constant
boundary element discretization technique according to the
numerical scheme described below.

III. NUMERICAL ALGORITHM

A brief description of the numerical algorithm is pre-
sented in this section. For more extensive details on the
BIEM applied to a two-phase axisymmetric flow, the reader
may refer to the review by Tanzosh et al. on the solution of
free surface flow problems using this technique �67�. The
BIEM turns out to be an excellent tool to solve interfacial
flow problems with high resolution as reported in the analy-
sis of flow involving electric and magnetic fields �68� or
buoyancy �69,70�.

Because solutions to Stokes’ equation can be formulated
in terms of Green’s functions, we can rewrite the governing

equations as a system of integral equations over the bound-
aries of the computational domain. When doing so, the
boundary integral form of the Stokes equation for fluid i �i
=1,2� can be written as follows �71�:

1

2
ui�x� = 


SI+SCi

U · �Ti · ni�dSy − 

SI

ni · K · uidSy ,

�15�

ni being the unit normal vector directed toward the outside of
fluid domain i. In this last expression, U and K are second-
and third-order tensors forming the Green’s kernel for veloc-
ity and stress associated with the Stokes equation. These two
tensors are, respectively, given by �71�

U�d� =
1

8�

1

d
I +

dd

d3 � , �16�

K�d� = −
3

4�

ddd

d5 � . �17�

In these two relationships, d=x−y, y�ry ,zy� is the integration
point. Once boundary conditions on SI, SC1, and SC2 are used,
the two-phase Stokes problem can be written in the follow-
ing compact form:

u�x� = 

SI

U · n���ry� − ��ry��dSy

+
2

1 + 


�1 − 
�


SI

n · K · udSy

+ 


SC1

U · �T1 · n�dSy − 

SC2

U · �T2 · n�dSy� .

�18�

Here, SI, SC1, and SC2 must be understood as axisymmetric
surfaces instead of their trace in the plane of Fig. 2. In Eq.
�18�, the first term on the right-hand side describes the flow
contribution from surface tension and radiation pressure,
whereas the second term accounts for the shear rate contrast
at the interface. As expected, this second term vanishes when
there is no viscosity contrast between the two phases �

=1�. The third and fourth terms account for the shear occur-
ring on SC1 and SC2 as a result of the no-slip boundary con-
dition. The solution of the problem consists in the computa-
tion of the velocity, u, on the interface as well as the stress
over all the boundaries SI, SC1 and SC2. This is performed
once Eq. �18� has been discretized using boundary elements.
Here, we use constant boundary elements for which pressure,
velocity, and hence stress take constant values on each ele-
ment, equal to that at the central node. The overall numerical
procedure can be summarized as follows. �i� All boundaries
SI, SC1, and SC2 are discretized with line segments of total
number N. The fluid-fluid interface SI is parametrized in
terms of an arc length, s, so that the double mean curvature
can be accurately computed using the following expression:
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��r� = � dt

ds
� +

z��r�
r�1 + z�r��2�1/2 , �19�

where t is the tangential vector to SI. The number of mesh
points on SI is 70 for a typical computation. Each horizontal
and vertical solid boundary is meshed using approximately
50 uniformly distributed points. An increase in the mesh res-
olution for the interface and solid boundaries did not show
any significant change in the results. �ii� At each time step,
the azimuthal integration of the integrals arising once Eq.
�18� is discretized with N constant boundary elements is per-
formed analytically �72,73� reducing Eq. �18� to line integra-
tions that are finally performed using Gauss quadratures �74�.
Elliptic integrals resulting from the azimuthal integration are
evaluated using power series expansions �75�. �iii� Once all
integrals are calculated, the linear system Aw=b is formed
where w is the vector of the unknown boundary values of
velocities on SI and normal stress and shear on SI, SC1, and
SC2. The matrix A results from boundary integrals computed
with the procedure detailed above. The vector b is obtained
from the product of boundary integrals and the known part of
the normal stress jump on SI as it appears on the first term on
the right-hand side of Eq. �18�. This linear system is solved
at each time step using a direct method based on a LU de-
composition. This step provides u�x� on SI. �iv� Finally, the
motion of the interface is captured using the kinematic con-
dition �Eq. �13�� and an explicit first-order Euler time
scheme, the discrete form of which can be written as follows:

r�t + �t� = r�t� + ur�t��t , �20�

z�t + �t� = z�t� + uz�t��t , �21�

where �t is the time step. This time step is typically chosen
to be about 20 times smaller than t*. Once the interface has
been moved �stretched or squeezed�, the mesh is recon-
structed using a smoothing procedure with local cubic
splines. Starting from an initial semicircular interface at rest,
the laser beam is switched on at t=0 and the interface starts
to deform toward the fluid of smallest refractive index. The
overall algorithm is repeated until final equilibrium is
reached, and this is achieved when

u�x� · n � 	, x � SI, �22�

where 	�1 is a user fixed parameter.

IV. RESULTS

In this section, we first present results on drop stretching
by the optical radiation pressure. An outward deformation of
the liquid drop is obtained when its optical index of refrac-
tion is larger than that of the surrounding fluid �i.e., N1

N2�, resulting in the formation of near-conical shapes at
different dimensionless initial drop radii a and refractive in-
dex ratios, characteristic of most dielectric fluids. An insta-
bility arising from the destabilization of the drop above a
threshold value of � is also demonstrated. Results on drop
squeezing corresponding to N1�N2 are presented in a sec-
ond part. In this case, drop deformation becomes concave
and may reach a toruslike shape.

A. Drop stretching by the optical radiation pressure

Simulations of outward deformations were performed
with 
=

�1

�2
=2 and �=

N1

N2
=1.1. This value of the index ratio,

corresponding, for example, to a toluene droplet immersed in
water, was chosen as a representative couple for the water/oil
interface. The generality of the investigation is nonetheless
totally preserved because 
 has no influence on the stationary
shape of deformed drop �see the left inset of Fig. 3� and no
bifurcation has been observed in our study. Variations in �
just lead to qualitative differences in optical radiation pres-
sure effects, as illustrated in the near-conical shape study
�see Sec. IV B�. Stationary shapes of an optically stretched
liquid drop of dimensionless radius a=0.5 are illustrated in
Fig. 3 for different optical to Laplace pressure ratios �. In
Fig. 3, one clearly sees that the shape of the drop progres-
sively varies from rounded ��=10,20,40� to near-conical
��=500�. These stationary shapes result from the competition
between capillary forces and optical radiation effects. In-
creasing � increases the height of the deformation and thus
induces in turn an increase of the curvature of the interface.
This effect is maximized at the tip of the deformation due to
the Gaussian profile of the light intensity and the normal
incidence at the interface at r=0, as illustrated in the right
inset of Fig. 3. Therefore, an important increase in � eventu-
ally leads to pointed drop shapes, assuming the fixed contact
line hypothesis and the finiteness of the drop volume. Al-
though the stress on the interface is of optical origin here
rather than electrically or magnetically induced, the deforma-
tion of drops by the optical radiation pressure shows striking
similarities with those observed in electro- and magnetohy-
drodynamics �25,26,54,68�. There are nevertheless two ma-
jor differences. First, the relative extension of the exciting
field versus the drop size, considered as infinite in the case of
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FIG. 3. �Color online� Optical stretching of a drop of dimension-

less radius a=
Rd

�0
=0.5 �Rd is the drop radius, �0 the beam waist�.

The number associated with each outward deformation refers to the
pressure ratio �. The initial spherical shape is represented by the
dashed line. The arrow indicates the direction of propagation of the
laser beam. Left inset: steady shapes at �=50 for two viscosity
ratios showing no effect of 
 on the steady-state solution. Right
inset: variation of the optical radiation pressure rescaled by its value

at normal incidence, versus the incidence angle for
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=1.1.
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electric or magnetic fields, is intrinsically finite due to the
Gaussian shape of the laser intensity in the current analysis.
Moreover, the associated radiation pressure decreases nonlin-
early with the incident angle through the Fresnel transmis-
sion coefficient, drastically reducing the mechanical effect of
the beam at the edge of the deformation when its aspect ratio
increases significantly �see the right inset of Fig. 3�. Second,
the pointed shape observed on the axis does not originate
from a local increase of the electric field at the tip as in the
electrostatic case because at a given �, the optical radiation
pressure at the tip, where the incidence angle is close to zero,
remains regular.

Figure 4 shows the outward deformation of a drop with
dimensionless radius a=1 and 2. Qualitatively, droplet defor-
mations are very similar to those of Fig. 3. Increasing the
dimensionless radius of the drop leads to a decrease of the �
value required to achieve a given dimensionless deformation
height. In other words, a larger drops will have a higher
aspect ratio h /a than a smaller one for the same �, h being
the equilibrium height defined as h=z�r=0, t→ � �. The �
variation of the drop aspect ratio h /a is illustrated in Fig. 5
for different drop radii a. The fact that the h /a��� curves
depend on a can be explained by the distribution of radiation
pressure on the drop, as shown in the inset of Fig. 5. When
a�1, the electromagnetic intensity applied to the drop is
almost uniform. The radiation pressure depends mainly on
the incidence angle, which varies for an initial spherical drop
from 0° at the tip to 90° at the contact line. So, it is nearly
uniform except near the contact line, where it decreases
down to zero, as shown in the inset of Fig. 5. The associated
electromagnetic normal stress is almost uniform all along the
drop surface. Conversely, when a�1, the radiation pressure
depends mainly on the Gaussian intensity of the laser beam,
as the incidence angles near the tip remain close to zero. The
electromagnetic normal stress is localized on the top of the
drop. Consequently, the drop is more deformed for a�1 than
for a�1.

B. Optical cone formation and interface instability

As illustrated in Figs. 3 and 4, drop deformations with
near-conical shape seem to emerge when increasing the pres-
sure ratio � whatever the beam radius. It could be objected
that such a generic shape requires an optical radiation pres-
sure behaving as 1 /r to balance the Laplace pressure, while
the optical coupling shows a dependence in both exp�−r2�
and a nonlinear function of the incident angle. However, as
experimentally illustrated in Fig. 1 and in the following, un-
der certain conditions, conical shapes can approximate the
true deformation profile with a high degree of accuracy. The
existence of such deformation is still surprising if we take
into account predictions for dielectric drops subjected to
electric fields �25,26,54,68�, which indicate that conical
shapes cannot exist for a dielectric constant ratio smaller
than 20. Here, the situation is nevertheless different since the
beam profile is inhomogeneous and the deformation effi-
ciency depends on the beam extension. To quantitatively in-
vestigate the emergence and the existence of conelike
shapes, we implemented the following procedure. For a
cone, the semiangle is defined as 90−arctan��z� � � �in °�,
where z� is the slope of the generating line. Considering a
drop of dimensionless radius a, we plot 90−arctan��z� � � for
increasing �. A cone-tip signature appears through the emer-
gence of a plateau, corresponding to a constant local slope z�
along the interface, which defines its semi-angle. As is illus-
trated in Fig. 6 for a=0.5 and 2, i.e., for a beam waist larger
and smaller than the droplet radius, respectively, a plateau
emerges at a threshold �P�50 �a=0.5� and �P�8 �a=2� for
N1 /N2=1.1. Its wideness increases for �
�P while the cor-
responding semiangle remains almost constant. This satura-
tion of the semiangle at large �, observed at any investigated
dimensionless drop radius, demonstrates the robustness of
the near-conical deformation. Results in Fig. 6 also suggest
that the value of the semiangle varies with the dimensionless
drop size a. In Fig. 7, we present stationary deformations of
liquid drops of different dimensionless radii when �
�P. A
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near-conical shape is systematically observed. These results
also illustrate, in a different representation, the variation of
the vertical semiangle of the cone versus the radius of the
drop. To be more quantitative, Fig. 8 shows that the semi-
angle �i� remains finite at large values of � whatever the
value of a and �ii� exhibits two different asymptotic values at
large and at small a, the larger one, at small a, logically
corresponding to the steep variation of the mean slope of the
deformation h /a��� shown in Fig. 5, and the smaller one at
large a to the smooth variation of h /a���. For small a, the
asymptotic value is roughly 26° while it is close to 5° at
large values of a.

The finiteness of the asymptotic value of the cone semi-
angle at large � is the most striking behavior of this class of

laser-induced interface deformations. The fact that the opti-
cal radiation pressure pulls the cone tip with a diverging
strength when �→� would make one indeed think that the
cone slope also diverges. This behavior has a consequence
on the cone stability. In fact, above a second threshold value
�I of �, the drop deformation becomes unstable leading to an
interface breakup, as illustrated and discussed below.

In the a�1 limit, the experimental conditions used to
deform the drop are similar to those used with electric fields
in capacitors since the radial extension of the exciting laser
wave is significantly larger than the drop size. Moreover, the
asymptotic value of the semiangle 26° is close to the mini-
mum one, 30°, found for dielectrics in electric fields. This
result is surprising since the dielectric constant ratio required
to reach this minimum angle is �N1 /N2�2=1.21 while in the
electrostatic case it corresponds to 17.6. In addition, the
asymptotic value of the semiangle in the case of optical ex-
citation at small a was found to remain equal to 26° for
�N1 /N2�2=17.6, an unrealistic optical situation for dielectric
liquids. This mismatch between electrical and optical excita-
tion is likely due to the fact that the mechanisms involved in
the formation of near-conical shapes are different. However,
even if we do not yet have any quantitative explanation,
these observations, at least at the level of experimental ob-
servations, suggest the existence of a possible common phe-
nomenology of the deformation of dielectric drops by elec-
tric and optical excitation. To give another insight into this
appealing comparison, we analyzed the index contrast varia-
tion of the semiangle for different dimensionless drop radii
�inset of Fig. 8�. The refractive index ratio was varied from
1.05 to 2, this last value corresponding to an upper limit for
the free surface of dielectric liquids �the largest index of
refraction we know is that of diiodomethane CH2I2, N
=1.7425 at 20 °C�. Given a dimensionless radius a, the mea-
sured angle increases weakly with N1 /N2 when a=1, while it
is almost constant for a�1. This last behavior can be ex-
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plained by the two following facts: �i� the laser incidence
experiences all angles between 0° and 90° when the beam
waist is larger than the drop radius and �ii� the light intensity
is almost uniform over the drop when a�1.

All the near-conical shapes presented above were ob-
tained before the previously mentioned instability threshold.
They were thus stable. Given a dimensionless drop radius a,
when the pressure ratio � reaches what we called the second
threshold value �I �the first one, �P, was attached to the emer-
gence of a near-conical shape�, a destabilization of the defor-
mation is observed, leading to a disruption of the interface at
the tip, as illustrated in Fig. 8. A refinement in mesh and time
steps did not show any change in this behavior. Even if the
optical radiation pressure is known to be able to destabilize a
fluid interface and form a liquid jet �44,47�, this numerical
result is quite different because jetting was previously in-
duced by total reflection of light within the deformation
when the laser beam propagates from the fluid having the
largest refractive index toward that of lowest refractive in-
dex, as is the case in Fig. 1. To prevent this effect, here the
opposite situation was chosen. The beam propagates from
the fluid having the lowest refractive index toward that of the
largest refractive index, a situation in which “nipplelike” in-
terface deformations are generated at large beam powers for
fluids of infinite extensions �45� and for which further in-
crease of the power keeps the nipplelike shape stable. The
main difference with the present investigation is that now,
the volume of one of the two fluids, the drop, becomes sig-
nificantly small compared to the other one. Increasing � still
increases the height of the deformation, but the drop turns to
adopt a near-conical steady shape, the semiangle being sur-
prisingly preserved along a wide plateau whose extension
increases toward smaller values of r while increasing � �see
Fig. 6�. This complex balance between the Laplace pressure
and the laser incidence dependent radiation pressure is pre-
served up to �I, as illustrated in Fig. 9. The saturation of the
semiangle at large � observed numerically implies that the
radiation pressure applying along the cone slope increases
linearly with �, whereas the cone shape does not evolve any-
more: this qualitatively explains why a destabilization of the
strongly deformed drop occurs beyond the threshold value �I,
as illustrated in Fig. 9. A quantitative investigation of this
drop disruption under a very high optical radiation pressure
regime and the subsequent disruption, which clearly deserve
a devoted study, will be presented in future development.

C. Drop squeezing by the optical radiation pressure

In this section, we investigate the deformation of a liquid
drop of refractive index lower than that of the surrounding
liquid. We preserved 
=

�1

�2
=2 for calculations and reverse

the refractive index contrast by taking �=
N1

N2
=0.9 in order to

force a drop squeezing instead of stretching. Moreover, we
restricted our investigation to the case a�1 in order to avoid
any significant effect of multiple reflection inside the droplet.
As before, the generality of the purpose is preserved because
the value of 
 has no influence on the stationary shape of
deformed drops and variations in � just modify quantita-
tively the optical radiation pressure effects. Figure 10 shows

the resulting variations of the stationary shape of a liquid
drop of dimensionless radius a=1 and 3 at various pressure
ratio �. The spherical shape flattens at low values of �. For
larger beam power, the curvature reverts and the shape be-
comes concave. At large �, the concavity reaches the solid
boundary and flattens more and more in its central region. As
in the stretching case, the main difference between the defor-
mations obtained at different dimensionless drop radii is that
the amplitude of the deformation at a given � decreases with
the drop radius and reaches some asymptotic behavior. In
Fig. 11, we have represented the evolution of the reduced
height of the drop h /a as a function of the pressure ratio �
for drop radii 1�a�3. For a�2, the evolution of the re-
duced height shows little change while increasing a. A be-
havior similar to that was already observed for drop stretch-
ing. These observations can also be explained by the
decrease of the incidence angle range of the illuminated area
of the drop while increasing its radius. For a=1, larger ra-
diation pressure is required to obtain the same amplitude of
the interface deformation. The former argument proposed for
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drop stretching can be used again to explain the observed
increase in � required to reach equilibrium: when a�1, the
local illumination of the drop leads to larger deformations
compared to the case in which the field is more uniform �a
=1�. While optical stretching leads to near-conical shapes at
large �, the squeezing of a drop should give birth to the
formation of a stable “optical torus.” Indeed, by assuming a
fixed contact line on the substrate, we implicitly prevent drop
spreading, thus promoting the formation of an annular rim.
The film thinning at the center should also induce local
“dewetting” when the deformation reaches the substrate, as

in the electric case �76�. Here, we assume that molecular
forces are much larger than any external forcing at a nano-
metric scale, and we speculate that Van der Waals forces will
dominate the final stage of the deformation �77�, a result that
could be retrieved by including the disjoining pressure into
the Stokes equations or boundary conditions at the interface
�76�. Consequently, even if the formation of a stable torus
from radiation pressure effects is still speculative and war-
rants an experimental demonstration, the present investiga-
tion shows that lasers allow for drop squeezing with mor-
phologies that were, to the best of our knowledge, never
even suggested while using electric fields.

V. CONCLUSIONS

Although many appealing applications of optically in-
duced drop deformations can be advanced, among them the
optical stretcher tool, which was developed by Guck et al.
�36� to deform red blood cells and discriminate between sane
and cancerous cells �78�, or the contactless viscoelastic mi-
crocharacterization of fluids �79�, very few theoretical or nu-
merical studies were performed in this field, especially in the
nonlinear regime of deformation, which is strongly influ-
enced by finite-volume effects. The objective of this paper
was thus to provide new elements for understanding such
drop deformation and go even further in order to illustrate
the specificities of drop deformation by the optical radiation
pressure. Both deformation cases, the prolate one when the
drop is stretched and the oblate one when it is squeezed,
were studied at steady state as a function of the amplitude of
the optical radiation pressure, normalized by the Laplace
pressure, and for varying drop radii. We found that the elon-
gation of stretched drops varies significantly with the beam
waist and can adopt a near-conical shape at large optical
radiation pressures, as suggested by the experimental illus-
trations of Fig. 1. Contrary to the classical electrodynamics
case, where a minimal dielectric constant ratio is required to
reach cone shapes �54�, these shapes are observable at any
optical refractive index ratio. The semiangle was found to be
a decreasing function of the drop radius, showing two
asymptotic values. When the drop is much smaller than the
beam, the semiangle is close to that obtained for electrically
deformed dielectric drops. Above a threshold in radiation to
Laplace pressure ratio, a disruption of the drop is observed.
This behavior is appealing because even if a similar phenom-
enon was already observed experimentally by Zhang and
Chang �40� on drops, Casner et al. �44� on extended two-
phase fluids, and presented in Fig. 1 for wetting films and
growing drops, the experimental conditions were totally dif-
ferent in the sense that instability was triggered by the total
reflection of light within the deformation. Here, the beam
incidence has been chosen to precisely avoid this mecha-
nism, showing that an optically stretched drop can still be-
come unstable above a radiation pressure threshold due to
finite volume effects. We also investigated drop squeezing
versus the amplitude of the radiation to Laplace pressure
ratio, and for various drop radii. At large radiation pressure,
the drop shape shifts from oblate to concave. As in the
stretching case, the squeezing significantly varies with the
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beam waist. With a further increase of the radiation pressure,
the concavity reaches the solid boundary giving birth to a
stable toruslike shape. Finally, by extending the develop-
ments on finite volume electrohydrodynamics to the optical
domain, our approach raised numerous questions on analo-
gies and differences in drop deformations control by electro-
magnetic fields in general. Not all of these questions re-
ceived definite answers. The optical jetting, for instance,
could open new horizons in microdroplet dispensing. Conse-
quently, even if the formation of stable cones and torus from
radiation pressure effects deserves experimental investiga-

tion, the present numerical study illustrates the opportunities
offered by laser waves to actively manipulate droplets at the
micrometer scale and reach dynamic and stable intriguing
nonlinear drop morphologies.
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